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A B S T R A C T
Surface water quality has a direct impact on public health, ecosystems, and agriculture, in addition
to being an important indicator of the overall health of the environment. California’s diverse climate,
extensive coastline, and varied topography lead to distinct spatial and temporal patterns in surface
water. This study offers a comprehensive assessment of these patterns by leveraging around 70
years of data, taking into account climate zones and geographical types. We analyzed surface water
quality indicators, including pH, dissolved oxygen, specific conductance, and water temperature, based
on field results from approximately 5,000 water quality stations in California Water Quality Data
(CWQD). Machine learning (ML) models were developed to establish relationships between spatial
and temporal variables, climate zones, geographical types, and water quality indicators. Applying
these models to spatially interpolate and temporally predict the four water quality indicators over
California for the next 50 years, the research results indicate an uneven distribution of water quality
indicators in California, suggesting the presence of potential pollution zones, seawater erosion, and
effects of climate change.

1. Introduction
The quality of surface water is an integral factor in

various aspects of human and ecosystem life. It is affected by
a diverse range of elements, from microbial content (Khadra
et al. (2022)) to industrial effluents (Kaur et al. (2010)),
to Earth’s water cycle (Sauvé et al. (2021)), all playing a
significant role in determining the quality of surface water.
A notable illustration of a significant water quality issue is
the nuclear wastewater leak in Fukushima, Japan, in 2011
(Buesseler et al. (2011)). The effects of the leak reached the
United States coastline in just three years due to atmospheric
pressure and ocean currents, with repercussions on water
quality that are projected to extend for over 30 years (Rossi
et al. (2013)). Water plays a crucial role in human well-
being and health, making the investigation and prediction of
water quality trends an essential area of research (Li and Wu
(2019)).

The World Health Organization (WHO) outlines in its
Guidelines for Drinking-Water Quality (GDWQ) (World
Health Organization (2022)) that assessing water quality
encompasses the evaluation of physical, chemical, and bi-
ological parameters (Icaga (2007); Zhu et al. (2022)). This
includes concentrations of harmful substances such as ni-
trates, the presence of organisms like E. coli, and levels of
radioactive materials. For example, the GDWQ explicitly
links the concentration of contaminants and microbiological
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Figure 1: System diagram of the spatio-temporal modeling in
this paper.

content to various water safety levels, drawing attention to
the relationship between the proportion of E. coli negative
samples and the quality of drinking water systems for dif-
ferent population sizes (refer to Table 5.2 in GDWQ). It is
crucial to note that these water quality indicators are defined
under specific environmental conditions. For example, the
WHO identifies a pH range of 6.5-8.5 at 25°C as ideal for
eco-friendly and health-promoting drinking water. However,
an increase in water temperature could lead to a decrease
in pH levels. Consequently, the distribution of these wa-
ter quality indicators is susceptible to climatic conditions,
temperature variations, and geographical features, posing
significant challenges to researchers attempting to estimate
and predict these interrelated indicators.

Water quality indices (WQIs) are generated by aggre-
gating multiple water-related measures available from tem-
porally and spatially-varying water quality datasets into a
single value Uddin et al. (2021); Chidiac et al. (2023). As
an example in the United States, a commonly used WQI

H. Chen et al.: Preprint submitted to Elsevier Page 1 of 10

ar
X

iv
:2

31
1.

12
73

6v
1 

 [
st

at
.A

P]
  2

1 
N

ov
 2

02
3



standard is the National Sanitation Foundation (NSF) index,
which consists of nine variables and is widely accepted and
applied (Brown et al. (1970); Noori et al. (2019)). As for the
examples of WQI application, Jha et al. (2020) proposed a
WQI model based on fuzzy geographical information sys-
tems to perform large-scale analyses of groundwater qual-
ity, and Kim et al. (2019) established a water quality risk
index (WQRI) for Korea based on a relationship between
water quality variables and drought indices determined by
a kernel density estimator. WQIs are useful as they provide
a straightforward way for the public and policy makers to
interpret complex data, however, they often do not account
for regional or local features, nor do they explicitly address
spatial and temporal variability, which may differ for each of
the component variables that make up a WQI. This implies
that when our focus is solely on a specific water quality
parameter, WQIs may not provide an intuitive representa-
tion. Furthermore, as WQIs are artificially formulated and
adjusted based on regional and temporal variations, they may
not objectively and accurately reflect the long-term changes
and future trends of water quality.

California, a highly populated state characterized by
its diverse climates and micro-climates, as well as varied
geographical features, has been the subject of significant
environmental research. It hosts three major climate types
- arid, temperate, and cold (Kauffman et al. (2003)), and
also experiences seawater erosion on its coastal freshwater
system. Water quality concerns in California have predom-
inantly been about nitrate contamination from agricultural
activities in the Central Valley such as fertilizer application
Pennino et al. (2020). Elevated concentrations of nitrate
have been associated with adverse birth outcomes Sherris
et al. (2021) and thyroid cancer Tariqi and Naughton (2021).
Other markers of water quality, including those examined in
this study, are important to monitor to ensure California’s
water is safe for human consumption and as a habitat for
aquatic life, which indirectly affects health through the food
chain. In a United States Geological Survey (USGS) report,
pH measured at 1,337 wells over a 20-year period from
1993 to 2014 in California’s Central Valley was modelled
and mapped to provide an understanding of water quality
conditions at domestic and public supply drinking water
zones Rosecrans et al. (2017). Another USGS report ana-
lyzed specific conductance and water temperature at eight
stations in the San Francisco Bay Area from 1990 to 2015,
found that both parameters reached record highs in the
region in 2015 (Work et al. (2017)). However, the existing
literature on water quality in California lacks comprehensive
spatio-temporal modeling that accounts for the long-term
assessment and integration of multiple indicators, and often
overlooks the diverse range of climate zones and geograph-
ical types (Ficklin et al. (2013); Li and Zhang (2019)).

In this paper, we conduct a spatio-temporal analysis
of water quality indicators (pH, dissolved oxygen, specific
conductance, and water temperature) collected in California
over the past 70 years, spanning from 1956 to 2023. We
establish relationships between spatio-temporal variables

and these indicators using regression and machine learning
(ML) models (Fig. 1). Through this approach we reveal
potential interactions among water quality indicators, cli-
mate zones, and geographical types. The trained spatio-
temporal models were applied to spatially interpolate the
water quality indicators over the state, revealing potential
areas of pollution or poor ecological health. Furthermore,
we used the models to project trends in the indicators for the
next 50 years. This allowed us to examine how ecological
and climate changes in California have impacted surface
water, suggesting future environmental protection policies.
California can be considered a microcosm for water quality
analysis under most geographical types and major climate
conditions, offering guidance for water quality analysis in
regions with similar climatic conditions or topography.

2. Materials and Methods
2.1. California Water Quality Dataset

The California Water Quality Dataset (CWQD) was
sourced from the California Department of Water Resources
(California Department of Water Resources (2023)). It
encapsulates a comprehensive amalgamation of both field
and laboratory results, underpinned by various physical
and chemical parameters. From a temporal perspective, the
CWQD documents a staggering 110 years of water quality
indices, starting in May 1913, and it continues to evolve
with real-time updates (Fig. 3). Throughout its lifecourse,
the CWQD has included a total of 29,229 water quality
monitoring stations across the state (Fig. 2). This is a vast
spatial representation, as California spans a longitudinal
breadth of 10.3◦ and a latitudinal extent of 9.47◦. This
expansive scope covers diverse terrains, extending from
deserts to islands and highlands to basins.

The CWQD provides three distinct classifications of
water based on varying depths: surface water, under-surface
water, and groundwater. The field results in the CWQD
include parameters such as pH, Dissolved Oxygen, Specific
Conductance, and Water Temperature (Table 1). In terms
of lab results, it encapsulate indices that mandate more ex-
tended testing periods and intricate procedural steps, such as
Dissolved Calcium, Dissolved Chloride, and Total Hardness,
among others. In this paper, we conduct a thorough analysis
of 5,080 water quality monitoring stations for surface wa-
ter parameters, spanning from January 1956 to July 2023,
within the scope of real-time field results from the CWQD.
Surface water quality data have been continuously collected
at these 5,000 over this time span, with most of them having
samples collected four times per month.

The variables available in CWQD are all important in-
dicators of surface water quality. pH, serving as a crucial
measure of water’s acidity or alkalinity, directly reflects the
solubility of toxic metals, the degree of eutrophication, and
the disruption of physiological functions in aquatic organ-
isms. Dissolved Oxygen is a pivotal standard for biological
survival, signifies one of the most foundational criteria for
assessing whether a considerable biological congregation
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Figure 2: Distribution of water quality stations in California. Points on the map represent stations, with Inland and Coastal in
Geographical Type, respectively. The varied background colors delineate different climate zones based on the Köppen climate
classification.

Figure 3: Lifelines of water quality stations in California. Each line represents the duration of existence for a station, with its color
indicating the climate zone of the station’s location (Fig. 2). See sub-climates abbrevitions in Section 2.2.

exists in rivers, lakes, etc. Specific Conductance, through
a more cost-effective and expeditious method, indirectly
mirrors ion concentrations of water quality indices. On the
contrary, it is challenging to measure Dissolved Calcium
in the field. Water Temperature provides an indirect re-
flection of water quality, wherein alterations in temperature
can signify shifts in the chemical, biological, and physical
characteristics of a body of water, consequently influencing
the health and stability of the entire ecosystem.

2.2. Köppen Climate and Geographical Types
Climate zones are inextricably linked to water quality

due to the pronounced impact different temperatures and
precipitation levels exert on water quality indices (Barbieri
et al. (2021)). For example, varying temperatures can influ-
ence the solubility of substances in water, while differing
precipitation levels may affect the concentration of dissolved
substances by altering water flow and levels. Consequently,
we employ the Köppen climate classification (Beck et al.
(2018)) to attribute nuanced climate labels to each station in
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Table 1
A preview of the preprocessed dataset CWQD used in our analysis, representing water quality in various stations of California
(California Department of Water Resources (2023)).

Station Latitude Longitude County Year Month pH Dissolved Specific Water Climate Geographical
ID (◦) (◦) (pH Units) Oxygen Conductance Temperature Zone Type

(mg/L) (𝜇𝑆∕cm@25◦C) (◦C)

1 37.8019 -121.6203 Alameda 1975 1 6.9 11.1 415.0 8.9 BSk Inland
2 37.5636 -121.6866 Alameda 1983 9 7.3 5.3 407.0 14.5 Csb Inland
3 37.6147 -121.7458 Alameda 2021 10 7.0 9.9 567.0 17.3 Csb Inland
4 37.8149 -121.5527 Alameda 1994 7 7.9 7.0 551.0 26.2 BSk Inland
5 37.6183 -121.7494 Alameda 2023 5 8.3 6.5 332.0 12.6 Csa Inland

California, as depicted in Fig. 2. The Köppen climate clas-
sification is a globally acknowledged and utilized climate
categorization system, extensively applied in various disci-
plines such as meteorology, climatology, and environmen-
tal science, to facilitate tasks like regional climate catego-
rization, biodiversity studies, and climatic impact analyses.
The Köppen climate classification encapsulates five primary
climate types, namely tropical (A), arid (B), temperate (C),
cold (D), and polar (E). Each of these major classifications
is further refined into a total of 30 sub-climates based on
nuanced differences in precipitation, temperature variations,
and geographical features. The sub-climates are differenti-
ated by factors such as the type of seasonal precipitation
and the degree of heat, exemplified by classifications such
as BSk, which stands for arid (B), steppe (S), and cold
(k), and Csb, which represents temperate (C), dry summer
(s), and warm summer (b). When formulating features or
variables for our models, we employ the broader classifica-
tions, incorporating only the pertinent three, as the climatic
specifics of California do not involve tropical (A) or polar (E)
classifications. Applying the finely segmented sub-climates
to California, the state is delineated into nine distinct sub-
climates. Specifically, the nine sub-climates include arid,
desert, hot (BWh); arid, desert, cold (BWk); arid, steppe, hot
(BSh); arid, steppe, cold (BSk); temperate, dry summer, hot
summer (Csa); temperate, dry summer, warm summer (Csb);
cold, dry summer, hot summer (Dsa); cold, dry summer,
warm summer (Dsb); and cold, dry summer, cold summer
(Dsc) (Fig. 3).

The composition and concentration of constituents vary
significantly between seawater and inland waters, mainly
due to the high salinity and pollutants found in seawater.
The intrusion of seawater into coastal areas and its po-
tential impact on inland surface waters can significantly
disrupt our assessments of inland water quality. In turn,
this could affect the proposed method for evaluating inland
water quality through surface water assessments, which is
crucial for supporting smart agriculture and other applica-
tions. Extensive literature review reveals that there is no
conclusive agreement on the distance, intensity, and depth of
seawater intrusion into inland surface waters (Abd-Elaty and
Zelenakova (2022); Mentaschi et al. (2018); Hussain et al.
(2019)). Consequently, we propose categorizing stations
located within eight kilometers of the coastline as Coastal
stations, and those situated more than eight kilometers away
as Inland stations (Fig. 2).

2.3. Experimental Setup
In the data pre-processing phase, we first rectified errors

within the entire dataset by correcting or removing them, ad-
dressing issues such as non-negative longitude and stations
with identical latitude and longitude coordinates but differ-
ent station IDs, and eliminating all observations with NA.
Subsequently, removed outliers, discarding data points that
fall outside the 95% confidence interval. After conducting
these preprocessing steps, we had a total of 64,185 samples,
which we then partitioned into training and testing subsets
at an 8:2 ratio, using the training set to develop the model
and the unseen test set to evaluate its accuracy. For the
evaluation of model performance, we employed Root Mean
Square Error (RMSE) and the coefficient of determination
(𝑅2) as our principal metrics. RMSE provides insights into
the discrepancies between the actual values in the dataset
and the predictions from the model, while 𝑅2 quantifies the
explanatory power of the model.
2.4. Analysis

Machine learning, with its ability to perform nonlinear
parameter fitting, has seen widespread adoption in the esti-
mation of spatio-temporal variables to capture complex pat-
terns and interactions within data (Tahmasebi et al. (2020);
Yuan et al. (2023a,b)). We consider six regression models
as potential candidates for data fitting. The Linear Model
(LM) is a method of predicting a response variable, such as
a expected water quality indicator, through a weighted sum
of predictor variables (e.g., month, year, longitude, latitude,
etc.) and a constant term (a.k.a. the intercept) plus an error
term. Random Forest (RF) is an ensemble technique that
produces a more reliable result by combining the predic-
tions of multiple Decision Trees (DTs). Each tree is trained
on a random subset of the data and predicts the expected
water quality indicator based on predictor variables. The
Gaussian Process (GP) estimates mean and variance param-
eters by fitting the response and predictor variables with a
covariance function (Guinness (2021)). Prediction of new
data is based on observations and its covariance structure.
Support Vector Machine (SVM) finds a hyperplane in a high-
dimensional space that is as far away from observations of
different categories as possible to achieve regression. The
Generalized Additive Model (GAM) introduces nonlinear
functions on the basis of LM, allowing complex relation-
ships between response variables and predictor variables
transformed through nonlinear functions, providing greater
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Table 2
The RMSE of each water quality indicator predicted by various ML methods on the test set. S-T and V-D refer to Spatio-Temporal
Estimation (Section 3.1) and Variable-Dependent Inference (Section 3.2), respectively. The lowest RMSE for each water quality
indicator is highlighted in bold.

pH Dissolved Oxygen Specific Conductance Water Temperature
(pH Units) (mg/L) (𝜇𝑆∕cm@25◦C ) (◦C )

Method S-T V-D S-T V-D S-T V-D S-T V-D

LM 0.548 0.498 1.989 1.913 1285.151 405.445 5.086 4.516
RF 0.408 0.378 1.362 1.452 631.505 257.467 1.918 1.859
GP 0.446 0.465 1.483 1.856 733.691 346.392 2.234 2.757
SVM 0.495 0.428 1.718 1.649 1273.048 380.100 2.524 2.221
GAM 0.478 0.432 1.686 1.715 961.122 348.542 2.445 2.306
XGBoost 0.402 0.376 1.355 1.380 601.385 247.900 1.838 1.738

Table 3
The 𝑅2 of each water quality indicator predicted by various ML methods on the test set. S-T and V-D refer to Spatio-Temporal
Estimation (Section 3.1) and Variable-Dependent Inference (Section 3.2), respectively. The highest 𝑅2 for each water quality
indicator is highlighted in bold.

pH Dissolved Oxygen Specific Conductance Water Temperature

Method S-T V-D S-T V-D S-T V-D S-T V-D

LM 0.085 0.207 0.059 0.230 0.051 0.210 0.161 0.339
RF 0.493 0.542 0.559 0.557 0.771 0.682 0.881 0.900
GP 0.393 0.309 0.476 0.275 0.691 0.425 0.838 0.757
SVM 0.254 0.415 0.298 0.428 0.068 0.306 0.793 0.842
GAM 0.302 0.402 0.324 0.381 0.469 0.417 0.806 0.830
XGBoost 0.507 0.548 0.563 0.599 0.792 0.705 0.890 0.903

flexibility and accuracy for prediction (Hastie (2017)). Ex-
treme Gradient Boosting (XGBoost) is also an ensemble
method that combines the predictions of multiple DTs to
generate a final prediction (Chen and Guestrin (2016)). In
addition to RF, XGBoost adds new trees at each step based
on the error of the previous tree and uses gradient boost-
ing techniques to guide this process to gradually optimize
prediction performance. Model performance is optimized
through extensive parameter tuning.

3. Results
3.1. Spatio-Temporal Estimation

We explore the relationship between various spatio-
temporal variables (i.e., Month, Year, Latitude, and Lon-
gitude) and individual water quality indicators (i.e., pH,
Dissolved Oxygen, Specific Conductance, and Water Tem-
perature). We also apply the method for Spatial Interpola-
tion (Section 3.3) and Temporal Prediction (Section 3.4) to
forecast water quality indicators at any given location and
future time. The performance of the six models is evaluated
using RMSE (Table 2, S-T) and 𝑅2 (Table 3, S-T). From our
observations, XGBoost excels in predicting all four water
quality indicators. This success is attributed to its ability to
effectively capture the interrelationships between variables
and to reveal hidden patterns in the data. XGBoost, with
its ensemble learning approach based on gradient-boosted

decision trees, comparatively good at capturing the non-
linear spatio-temporal patterns of water quality indicators.
This becomes particularly significant for real-world datasets,
such as the CWQD used in this paper, which display some
outliers and lack continuous data, like the data missing from
water quality stations between 1992-1998 (Fig. 3). Thus, the
robustness of XGBoost assists in addressing the challenges
posed by data noise and gaps.

In addition to comparing the models, we analyze how
each model performs when estimating different individual
water quality indicators. Through the results (Table 3), it
can be observed that water temperature has the highest 𝑅2,
whereas the 𝑅2 for pH value is the lowest. This reveals
that, comparatively, pH has the lowest interpretability, while
water temperature has the highest. All these water quality
indicators are affected by the environment, but each variable
responds to environmental influences differently due to their
inherent characteristics. Water has a relatively high specific
heat capacity, making it less susceptible to substantial fluc-
tuations due to environmental changes. Moreover, water has
a better thermal conductivity than many other substances,
meaning that heat can quickly propagate through it, reducing
rapid local temperature changes. Since surface water in
nature is not composed only of hydrogen and hydroxide
ions but also various cations and anions from rocks, soil,
atmosphere, and biological activity, when other substances
enter the water, they may react with it, forming acids or
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a) b)

c) d)

Figure 4: Spatial interpolation for predicting four water quality indicators in July 2023, including pH (a), Dissolved Oxygen (b),
Specific Conductance (c), and Water Temperature (d).

bases, thereby altering the pH value. Therefore, compared
to the stable water temperature, the volatile and easily in-
fluenced pH value will have higher uncertainty and lack
of representativity during data collection, leading to higher
errors and lower interpretability.
3.2. Variable-Dependent Inference

In addition to Spatio-Temporal Estimations, we also
attempt to improve the performance of our model by using
prior knowledge such as topography, environmental poli-
cies, and other relevant information, and a more detailed
analysis of samples based on feature combinations, which
will help us identify hidden patterns. Moreover, we aim to
use alternative and supplementary variables for forecasting
to enhance the predictive accuracy of our target variables
and reduce detection costs. It is imperative to acknowledge
the intricate interplay and cascading effects among these
water quality indicators. For example, as the temperature
of the water rises, its capacity to hold dissolved oxygen
typically decreases. Subsequently, under low oxygen con-
ditions, certain microorganisms might undergo anaerobic
respiration, potentially producing acidic substances such as
hydrogen sulfide, leading to a drop in pH. A decrease in
pH can instigate the precipitation or dissociation of specific
ions, affecting the conductivity of the water. An increase
in the electrical conductivity of water could indicate a cor-
responding increase in the water temperature, as it implies
faster ion mobility. Our models are also able to identify
and rectify anomalies stemming from operational errors

during manual data collection, environmental interference,
and the singularity induced by regional constraints. There-
fore, we present variable-dependent features for inference,
which include three additional water quality indicators, as
well as Climate Zone and Geographical Type as categorical
variables.

From the RMSE results (Table 2) and 𝑅2 (Table 3), due
to errors in manual detection and recording of results, and the
interference caused by environmental factors, a significant
error margin is evident. For example, anomalies arise, such
as water temperatures reaching thousands of degrees, pH
values exceeding one hundred, and inconsistent data for the
same variable at identical times and locations. The data pre-
processing we undertake, coupled with the model’s inherent
robustness against noise, ensures that the model’s results
fall within an acceptable range. Consequently, by solely
utilizing time, space, and four variables as inputs in Spatio-
Temporal Estimation, the models only achieve acceptable
performance. However, incorporating other water quality in-
dicators, Climate Zone, and Geographical Type as additional
variables significantly enhances the predictive accuracy of
the models. Furthermore, these additional variables help
identify and rectify anomalies that arise from operational
errors during manual data collection, environmental interfer-
ence, and unique challenges posed by regional constraints.
3.3. Spatial Interpolation

In this paper, we employ spatio-temporal models to
delineate the spatial distribution and trends of four water
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a) b)

c) d)

Figure 5: Temporal prediction of the projected changes in four water quality indicators, including pH (a), Dissolved Oxygen (b),
Specific Conductance (c), and Water Temperature (d), from 1975 to 2070 at San Francisco (37.7749◦N, 122.4194◦W). The blue
line represents the average values across all water quality stations, while the purple line denotes the predicted water quality specific
to San Francisco. The shaded area signifies the 95% confidence interval.

quality indicators in California. We use the GAM model
to estimate the distribution of water quality indicators in
California for July 2023 as an example and demonstrate
distribution maps of water quality indicators (Fig. 4). These
indicators vary spatially but exhibit some intrinsic con-
nections. For example, pH, Dissolved Oxygen, and Water
Temperature all demonstrate a gradient variation from north
to south, with specific characteristics in the desert region of
southern California.

The overall pH values of California’s surface water tend
to be slightly alkaline. The desert region of southern Cali-
fornia displays an approximately uniform pH of around 9,
while other areas show sporadic and irregular distributions
(Fig. 4a). It is important to note that pH is an indicator of
the acidity and alkalinity of water quality, strongly related to
the temperature at the time of measurement. In particular,
the CWQD, which we use in this paper, is measured and
recorded on-site by the experimenter. Therefore, when we
estimate surface water pH in July, the field results data may
be affected by the increase in pH caused by the overall
increase in water temperature in summer. Moreover, the
scattered pH values in the northern and central parts of
California could be due to a mix of geographical factors
and human activities, such as increased aquatic biological
activity during summer or irrigation practices in agricultural
zones. For the desert region of southern California, the

elevated pH might be attributed to evaporation effects and
the influence of soil salinity.

Similarly, Dissolved Oxygen follows the same gradient
trend as pH (Fig. 4b). This could be attributed to temperature
variations, as cooler waters tend to have higher Dissolved
Oxygen levels. On the other hand, geographical features,
such as dense vegetation in mountainous and forested re-
gions, might contribute to higher Dissolved Oxygen levels in
surface waters. Notably, a narrow region in the Central Val-
ley displays lower Dissolved Oxygen levels, which could be
due to ecological factors like upwelling or human activities
that impact water quality. Generally, most parts of California
exhibit relatively high Dissolved Oxygen levels around 10
𝑚𝑔∕𝐿, indicating a favorable aquatic environment.

For Specific Conductance in California’s surface water,
there is a consistent pattern, except for anomalously high
values observed near the San Francisco Bay Area (Fig.4c).
This might be due to the colder California Current from
the Pacific Ocean leading to lower ion mobility. Natural
filtering and dilution processes in the Central Valley and
mountainous areas contribute further to reducing conduc-
tivity. However, the elevated Specific Conductance levels
near the Bay Area could be linked to industrial and urban
outputs, combined with its geographical positioning that
experiences erosion from seawater. We examine further the
reasons for the extremely high Specific Conductance levels
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of the San Francisco Bay Area in the Temporal Prediction
section (Section 3.4).

Finally, Water Temperature showcases an evident north-
to-south rising trend, with a clear relationship to topography
(Fig. 4d). In areas near the desert in southern California, due
to the lower latitude and desert climate, Water Temperature
can reach a maximum of about 30◦C. Coastal zones in
central California, like the San Francisco Bay Area and Los
Angeles, show elevated Water Temperatures possibly due to
human activities. In contrast, the forested regions of northern
California and the elevated areas of the Sierra Nevada have
cooler water temperatures around 10◦C. This variation can
be attributed to their higher latitudes, altitudes, dense forest
covers, and melting snow from the mountains. Analyzing
water temperatures can also provide insights into climate
change, geothermal activities, and vegetation changes.
3.4. Temporal Prediction

To elucidate the reasons behind the extremely high
Specific Conductance levels in the San Francisco Bay Area,
we employ the GAM model to illustrate the changing
trends of four water quality indicators in San Francisco
(37.7749◦N, 122.4194◦W) over a span of 100 years, from
1975 to 2075 (Fig. 5). San Francisco’s coastal location, port
activity, and high population density provide a distinctive
contrast to the extensive and diverse terrains of California.
The confluence of seawater and freshwater in San Francisco
creates a complex milieu for water quality assessment in
the Bay Area, influenced by factors such as seawater in-
trusion, freshwater influx from the Sacramento River and
San Joaquin River, and precipitation impacts (Cloern and
Jassby (2012); Sutton et al. (2016); Schlegel and Domagalski
(2015)).

The pH level in the surface waters of San Francisco fol-
lows a trend similar to that observed throughout California
(Fig. 5a). Statewide, pH levels exhibit significant fluctua-
tions from 1975 to 2023 but tend to remain within a range of
7.5 to 8.5. These fluctuations may be attributable to seasonal
variations, climatic shifts, and industrial emissions. As San
Francisco transitions from an industrial hub to a nexus of
finance, technology, and tourism, model forecasts predict a
gradual decline in surface water pH over the forthcoming 50
years, maintaining within a stable range.

The Dissolved Oxygen content in San Francisco’s sur-
face water also reflects the overall California trend (Fig. 5b).
The spatial distribution of Dissolved Oxygen and pH levels
are similar, while their temporal trends are inversely related.
Dissolved Oxygen levels fluctuate but generally remain be-
tween 8 and 11 𝑚𝑔∕𝐿, indicating an environment conducive
to the maintenance of aquatic life. Projections based on our
model suggest a slow increase in Dissolved Oxygen over the
next half century, implying an improving aquatic ecosystem
in the area.

Specific Conductance of San Francisco is significantly
higher than the average of California, which reflects a higher
ion concentration in the surface water of San Francisco
(Fig. 5c). This high value might indicate the influence of

Figure 6: Interpretability of feature variable importances for
predicting pH value. The interpretability are exemplified by
XGBoost.

seawater or pollution. Meanwhile, fluctuations in conduc-
tance could result from environmental policies, urban de-
velopment, and industrial changes. Still, over a span of 100
years, the Specific Conductance does not show a clear up-
ward or downward trend. Work et al. (2017) noted a similar
phenomenon from 1990 to 2015, where the mean specific
conductance ranged from 10,000 to 50,000 𝜇𝑆∕cm@25◦C,
closely approaching the specific conductance levels found
in seawater. Therefore, we speculate that most of the water
quality monitoring stations in San Francisco measure sur-
face waters influenced by seawater intrusion. Furthermore,
it potentially provides insight into the extent of seawater’s
reach into the continent.

Water Temperature of San Francisco differs from the
overall trend seen across California (Fig. 5d). Compared to
the erratic fluctuations in the California’s Water Tempera-
ture, San Francisco displays regular fluctuations with a clear
long-term upward trend. This might be because California
has varied climates, while San Francisco experiences the
temperate (C) climate, where water temperature largely de-
pends on ocean currents. Predicted temperature rises relate
to global climate change, particularly rising sea levels and
ocean warming. These shifts could affect the ecosystem,
the fishing industry, and the economic activities related to
tourism in San Francisco.
3.5. Interpretability of Feature

Examplified by predicting the pH levels of surface wa-
ter using the XGBoost model, we present the proportional
impact of nine feature variables on the predictions of the
model (Fig. 6). It is evident that Latitude holds the highest
importance, followed by other three water quality indicators,
Longitude, and the two temporal variables, with the two
categorical variables (i.e., Climate Zone and Geographical
Type) performing the least. There is a significant disparity in
the pH values of water across different latitudes in Califor-
nia, making latitude a relatively crucial factor in estimating
pH values. This is particularly noticeable in California, given
its elongated rectangular shape, where areas of higher Lat-
itude are characterized by extensive forests and mountains,
while the lower latitude southern regions are predominantly
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arid and desert landscapes. Thus, Latitude significantly in-
fluences the pH value estimations. Additionally, the intrinsic
relationships between water quality indicators also play a
vital role, which aligns with our inference in Variable-
Dependent Inference (Section 3.2). In contrast, the impact
of Longitude on pH values is approximately half that of
Latitude, which could be attributed to the relatively uniform
distribution of climate, water temperature, and topography
across California’s longitudinal extent. As for the other two
temporal variables, Month and Year, they play a secondary
role in pH estimation, indicating a relatively weak correla-
tion with pH values over extended periods like 70 years and
across seasonal variations.

4. Discussion
The limitations of our study include the suboptimal

performance of the model in predicting pH levels. pH is a
unitless chemical parameter that measures the logarithmic
activity of hydrogen ions and is sensitive to temperature.
The inherent variability and instability of pH in natural
surface water make it a challenging parameter to predict
over the long term. Although the results from the localized
areas suggest stable trends, such as the consistent pH val-
ues around 8.5 in desert regions influenced by terrain and
latitude (Fig. 4a), the overall data across all stations do not
exhibit clear overarching temporal trends (Fig. 5a). Recent
research has revealed that the challenge of pH estimation is
due to the active and easily disturbed characteristics of pH
in natural surface water. Rosecrans et al. (2017) employed
a Boosted Regression Trees (BRT) model with more than
60 input variables, the model achieves a RMSE of 0.37 and
an 𝑅2 of 0.43. It can be find that, despite considering the
uniform terrain, geomorphology, and climate characteristics
of the Central Valley, predicting pH values with a large
number of input features remains a formidable task. Compar-
atively, our model encompasses the entire state of California,
incorporating various terrains, various climatic conditions,
and both Coastal and Inland areas. Moreover, while working
with a longer length-of-time dataset (ours 70 years vs. its 21
years) and significantly fewer features (ours 9 vs. its 60+),
and our 𝑅2 value is 10% higher.

In the process of conducting Variable-Dependent Infer-
ence, a series of experiments reveal that categorizing climate
into three major climates (B, C, D) yields slightly better per-
formance than subdividing it into nine sub-climates (BWh,
BWk, BSh, BSk, Csa, Csb, Dsa, Dsb, Dsc). Taking the
prediction of pH values using XGBoost as an example, the
former shows an approximate 5% performance improvement
over the latter. The main reason for this phenomenon is
the discrepancy in climate indices and time spans between
the Köppen climate classification dataset and CWQD. The
Köppen dataset is derived from seven other datasets related
to temperature, climate, and precipitation, and it relies on
different climate indices (Fick and Hijmans (2017); Karger
et al. (2017)). The literature labels that the confidence near
the boundaries of climate zones is relatively low(Beck et al.

(2018)). This is particularly evident in California with com-
plex climate zones, exhibiting increased uncertainty. Ad-
ditionally, there is a discrepancy in the time spans of the
datasets. Specifically, the Köppen dataset spans 30 years
from 1980 to 2016, while our water quality estimation covers
nearly 70 years, from 1956 to 2023. This asymmetry in
time spans further exacerbates the uncertainty in the climate
classification of water quality stations. Under the influence
of global climate warming and related factors, significant
changes have been observed in the major and sub-climate
classifications in California (Cui et al. (2021); Swain et al.
(2018); Mahlstein et al. (2013)). Consequently, categorizing
a water quality station under a single sub-climate type over
an extensive 70-year period appears to be an impractical ap-
proach. Although we have introduced the five major climate
classification (California only has three major climates) as
a method for categorizing the climate at the stations, it has
not demonstrated a dominant position in model predictions,
possibly due to the impacts of climate change (Fig. 6).

5. Conclusion
In this paper, we extensively evaluated four water quality

indicators across the entirety of California over the past
70 years, considering both Climate Zone and Geographical
Type. We found that the ML model incorporating spatio-
temporal variables can reliably estimate four water quality
indicators in California, including pH, Dissolved Oxygen,
Specific Conductance, and Water Temperature. In addition,
the incorporation of other intrinsically related water quality
indicators, Climate Zone, and Geographical Type serves
to further enhance the performance and robustness of the
model. We established interpolations and predictions for
four water quality indicators in terms of spatial and tem-
poral dimensions, visualizing their distributions, and pro-
jecting their trends for the next 50 years. We observed that
the gradient changes of pH, Dissolved Oxygen, and Water
Temperature are from north to south. These water quality
indicators experienced minor fluctuations in the short term,
but the long-term trend is towards a healthier ecological
environment. Furthermore, the rise in Water Temperature
also signifies the impact of global warming trends on the
aquatic ecological environment in the San Francisco Bay
Area. We discovered that Specific Conductance is unusually
high in the Bay Area, which might indicate the influence of
extensive pollution or seawater erosion, potentially lasting
up to 100 years. Our future work will dive deeper into other
environmental factors that could influence water quality,
such as topography, industrial emissions, agricultural activ-
ities, and environmental protection policy.
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