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ABSTRACT

Surface water quality has a direct impact on public health,
ecosystems, and agriculture, in addition to being an impor-
tant indicator of the overall health of the environment. This
study offers a comprehensive assessment of these patterns by
leveraging around 70 years of data in California, taking into
account climate zones and geographical types. We analyzed
surface water quality indicators, including pH, dissolved oxy-
gen, specific conductance, and water temperature, based on
field results from 5,080 water quality stations in California
Water Quality Data (CWQD). Machine learning (ML) mod-
els were developed to establish relationships between spatial
and temporal variables, climate zones, geographical types,
and water quality indicators. Applying these models to spa-
tially interpolate the four water quality indicators over Cali-
fornia, the research results indicate an uneven distribution of
water quality indicators in California, suggesting the presence
of potential pollution zones, seawater erosion, and effects of
climate change.

Index Terms— Water quality, spatio-temporal modeling,
climate, inland waters, water ecosystem

1. INTRODUCTION

The quality of surface water is an integral factor in various as-
pects of human and ecosystem life. It is affected by a diverse
range of elements, from microbial content [1] to industrial ef-
fluents [2], to Earth’s water cycle [3], all playing a significant
role in determining the quality of surface water. A notable
illustration of a significant water quality issue is the nuclear
wastewater leak in Fukushima, Japan, in 2011 [4]. The effects
of the leak reached the United States coastline in just three
years due to atmospheric pressure and ocean currents, with
repercussions on water quality that are projected to extend for
over 30 years [5]. Water plays a crucial role in human well-
being and health, making the investigation and prediction of
water quality trends an essential area of research [6].

California, a highly populated state characterized by its
diverse climates and micro-climates, as well as varied geo-
graphical features, has been the subject of significant envi-

Fig. 1: System diagram for the spatio-temporal analysis of
surface water quality.

ronmental research. It hosts three major climate types - arid,
temperate, and cold [7], and also experiences seawater ero-
sion on its coastal freshwater system. Water quality concerns
in California have predominantly been about nitrate contam-
ination from agricultural activities in the Central Valley such
as fertilizer application [8]. Elevated concentrations of ni-
trate have been associated with adverse birth outcomes [9]
and thyroid cancer [10]. Other markers of water quality, in-
cluding those examined in this study, are important to mon-
itor to ensure California’s water is safe for human consump-
tion and as a habitat for aquatic life, which indirectly affects
health through the food chain. In a United States Geologi-
cal Survey (USGS) report, pH measured at 1,337 wells over a
20-year period from 1993 to 2014 in California’s Central Val-
ley was modelled and mapped to provide an understanding of
water quality conditions at domestic and public supply drink-
ing water zones [11]. Another USGS report analyzed specific
conductance and water temperature at eight stations in the
San Francisco Bay Area from 1990 to 2015, found that both
parameters reached record highs in the region in 2015 [12].
However, the existing literature on water quality in California
lacks comprehensive spatio-temporal modeling that accounts
for the long-term assessment and integration of multiple indi-
cators, and often overlooks the diverse range of climate zones
and geographical types [13, 14].

In this paper, we conducted a spatio-temporal analysis of



water quality indicators (pH, dissolved oxygen, specific con-
ductance, and water temperature) collected in California over
the past 70 years, spanning from 1956 to 2023. We establish
relationships between spatio-temporal variables and these in-
dicators using regression and machine learning (ML) models
(Fig. 1). Through this approach we reveal potential interac-
tions among water quality indicators, climate zones, and ge-
ographical types. The trained spatio-temporal models were
applied to spatially interpolate the water quality indicators
over the state, allowing us to visualize how ecological and
climate changes in California have impacted surface water,
which can suggest future environmental protection policies.
For the complete version of this paper, please refer to [15].

2. MATERIALS AND METHODS

2.1. California Water Quality Data

The California Water Quality Dataset (CWQD) was sourced
from the California Department of Water Resources [16]. It
encapsulates a comprehensive collection of both field and lab-
oratory results, underpinned by various physical and chemi-
cal parameters. Throughout its lifecourse, the CWQD has
included a total of 29,229 water quality monitoring stations
across the state (Fig. 2). This expansive scope covers diverse
terrains, extending from deserts to islands and highlands to
basins. The CWQD provides three distinct classifications of
water based on varying depths: surface water, under-surface
water, and groundwater. In this paper we focus on the 5,080
surface water quality monitoring stations, spanning from Jan-
uary 1956 to July 2023, with measured parameters includ-
ing pH, Dissolved Oxygen, Specific Conductance, and Water
Temperature. Most of the 5,080 stations have data on samples
collected four times per month.

2.2. Köppen Climate and Geographical Types

Climate zones are inextricably linked to water quality due to
the pronounced impact different temperatures and precipita-
tion levels exert on water quality indices [17]. For exam-
ple, varying temperatures can influence the solubility of sub-
stances in water, while differing precipitation levels may af-
fect the concentration of dissolved substances by altering wa-
ter flow and levels. We employed the Köppen climate clas-
sification [18] to attribute climate labels to each station in
California, as depicted in Fig. 2. The Köppen climate clas-
sification is a globally acknowledged and utilized climate cat-
egorization system, extensively applied in various disciplines
such as meteorology, climatology, and environmental science,
to facilitate tasks like regional climate categorization, biodi-
versity studies, and climatic impact analyses. The Köppen
climate classification consists of five primary climate types:
(A), arid (B), temperate (C), cold (D), and polar (E). Each
of these major classifications is further refined into a total of

Fig. 2: Distribution of water quality stations in California.
Points on the map represent stations, with Inland and Coastal
in Geographical Type, respectively. The varied background
colors delineate different climate zones based on the Köppen
climate classification.

30 sub-climates based on nuanced differences in precipita-
tion, temperature variations, and geographical features. The
sub-climates are differentiated by factors such as the type of
seasonal precipitation and the degree of heat, exemplified by
classifications such as BSk, which stands for arid (B), steppe
(S), and cold (k), and Csb, which represents temperate (C),
dry summer (s), and warm summer (b). When formulating
these variables for our models, we used both the broader clas-
sifications, incorporating only the pertinent three, as the cli-
matic specifics of California do not involve tropical (A) or
polar (E) classifications, as well as the finely segmented sub-
climates, of which there were nine in across the state.

The composition and concentration of constituents vary
significantly between seawater and inland waters, mainly due
to the high salinity and pollutants found in seawater. Sea-
water intrusion in coastal areas impacts the specific conduc-
tance of inland surface water, which was of concern for our
assessment of inland water quality properties. Since there is
no conclusive agreement on the distance, intensity, and depth
of seawater intrusion into inland surface waters in the liter-
ature [19, 20, 21], we propose categorizing stations located
within eight kilometers of the coastline as Coastal stations,
and those situated more than eight kilometers away as Inland
stations (Fig. 2).

2.3. Data Pre-processing and Regression Model

In the data pre-processing phase, we addressed issues such
as implausible non-negative longitude values and duplicate
records with incorrect station IDs by setting these observa-
tions to missing. For the four water quality indicators we re-
moved outliers by discarding data points that fell outside the
95% th percentile. After conducting these steps, we had a to-
tal of 64,185 samples, which we then partitioned into training
and testing subsets at an 80:20% ratio, using the training set
to develop the model and the unseen test set to evaluate its



Table 1: Comparison of various regression models for predicting water quality indicators on the test set. The metrics are RMSE
(↓ lower is better) and R2 (↑ higher is better). The best performance for each indicator is highlighted in bold.

pH Dissolved Oxygen Specific Conductance Water Temperature
(pH Units) (mg/L) (µS/cm@25◦C ) (◦C )

RMSE (↓) R2(↑) RMSE (↓) R2(↑) RMSE (↓) R2(↑) RMSE (↓) R2(↑)

LM 0.498 0.207 1.913 0.230 405.445 0.210 4.516 0.339
RF 0.378 0.542 1.452 0.557 257.467 0.682 1.859 0.900
GP 0.465 0.309 1.856 0.275 346.392 0.425 2.757 0.757
SVM 0.428 0.415 1.649 0.428 380.100 0.306 2.221 0.842
GAM 0.432 0.402 1.715 0.381 348.542 0.417 2.306 0.830
XGBoost 0.376 0.548 1.380 0.599 247.900 0.705 1.738 0.903

accuracy.
To predict each of the surface water quality indicators

(i.e., pH, Dissolved Oxygen, Specific Conductance, and Wa-
ter Temperature), we used a predictor variable set that in-
cluded the Köppen climate zones, geographical types, lati-
tude, longitude, year, month, and the other three water qual-
ity indicators. We focused on six regression models, namely
the Linear Model (LM), Generalized Additive Model (GAM),
Random Forest (RF), Gaussian Process (GP), Support Vector
Machine (SVM) and Extreme Gradient Boosting (XGBoost).
While LM and GAM represent more traditional statistical ap-
proaches to spatio-temporal modeling, machine learning has
been recognized for its capacity to perform nonlinear param-
eter fitting and has been widely adopted in the estimation of
spatio-temporal variables to discern complex patterns and in-
teractions in data [22, 23, 24]. For the GAM model, which
can be explicitly used for spatial and temporal interpolation,
we used spatiotemoporal smoothing of latitude and longitude
and time through a tensor product basis, as well as cubic re-
gression splines to capture temporal trends [25].

To evaluate model performance, we employed the root
mean square error (RMSE) and the coefficient of determina-
tion (R2) as our principal metrics on the test set. RMSE pro-
vides insights into the discrepancies between the actual values
in the dataset and the predictions from the model, while R2

quantifies the explanatory power of the model.

3. RESULTS

3.1. Model Prediction

The performance of the six models evaluated using RMSE
and R2 (Table 1) show that XGBoost had the best perfor-
mance across all four water quality indicators. Water tem-
perature has the highest R2 = 0.903, whereas it was lowest
for pH R2 = 0.548, indicating that, comparatively, pH predic-
tions have lower accuracy and interpretability. Due to errors
in manual detection and recording of results, and the inter-
ference caused by environmental factors, a significant error
margin is evident. The data preprocessing we undertake, cou-
pled with the model’s inherent robustness against noise, en-
sures that the model’s results fall within an acceptable range.
Incorporating other water quality indicators, Climate Zone,
and Geographical Type as additional variables significantly

enhances the predictive accuracy of the models. Furthermore,
these additional variables help identify and rectify anomalies
that arise from operational errors during manual data collec-
tion, environmental interference, and unique challenges posed
by regional constraints.

3.2. Spatial Interpolation

By using spatio-temporal models to delineate the spatial dis-
tribution and trends of four water quality indicators in Cali-
fornia. We use the GAM model to estimate the distribution
of water quality indicators in California for July 2023 as an
example and demonstrate distribution maps of water quality
indicators (Fig. 3). These indicators vary spatially but ex-
hibit some intrinsic connections. For example, pH, Dissolved
Oxygen, and Water Temperature all demonstrate a gradient
variation from north to south, with specific characteristics in
the desert region of southern California.

The pH values of surface water are slightly alkaline. In the
southern California desert, pH levels are uniformly around 9,
while other regions display variable pH distributions due to
factors like temperature, geographical influences, and human
activities (Fig. 3a). Varied pH values in the north and central
parts are likely influenced by aquatic biological activity and
agricultural irrigation. The elevated pH in the southern desert
is possibly due to evaporation and soil salinity.

Dissolved Oxygen shows a gradient similar to pH, in-
fluenced by temperature and geographical features (Fig. 3b).
Cooler waters typically have higher Dissolved Oxygen levels,
and dense vegetation in mountainous areas contributes to this.
However, some Central Valley regions exhibit lower levels,
potentially due to ecological factors and human impact. Gen-
erally, most areas have high Dissolved Oxygen levels around
10 mg/L, indicating a healthy aquatic environment.

Specific Conductance patterns are consistent across Cali-
fornia, with notably high values near the San Francisco Bay
Area (Fig.3c). This could be related to the colder Califor-
nia Current and natural dilution processes in the Central Val-
ley and mountains. The high conductance near the Bay Area
might stem from industrial and urban influences and seawater
erosion.

Water Temperature displays a north-to-south increase,
correlating with topography (Fig. 3d). Southern California’s
desert regions reach temperatures around 30◦C due to lower



(a) pH (b) Dissolved Oxygen (c) Specific Conductance (d) Water Temperature

Fig. 3: Spatial interpolation for predicting four water quality indicators in July 2023, including pH (a), Dissolved Oxygen (b),
Specific Conductance (c), and Water Temperature (d).

(a) pH (b) Dissolved Oxygen (c) Specific Conductance (d) Water Temperature

Fig. 4: Interpretability of feature variable importances for predicting pH value. The interpretability are exemplified by XGBoost.

latitude and desert climate. In contrast, northern California
and the Sierra Nevada have cooler temperatures around 10◦C,
influenced by higher latitudes, altitudes, and dense forests.
Coastal areas show higher temperatures, likely impacted by
human activities. Water temperature analysis is important
for understanding climate change, geothermal activities, and
vegetation changes.

3.3. Interpretability

In predicting four indicators of surface water quality using the
XGBoost model, we demonstrate the proportional impact and
intrinsic relationships of nine feature variables on the model’s
predictions (Fig. 4). For pH and dissolved oxygen, the most
significant influences are water temperature and latitude, with
each other’s influence being the next most significant after the
formers (Fig. 4a and Fig. 4b). Due to seawater erosion, the
electrical conductivity in the bay area is exceptionally high,
making longitude and latitude the most critical features affect-
ing the estimation of electrical conductivity. Moreover, sea-
water erosion is a cumulative process; hence, changes over the
years also significantly affect the estimation of electrical con-
ductivity. California’s overall water temperature is strongly
correlated with the month due to its being a seasonally reg-
ular changing water quality indicator. These spatiotemporal
variables and water quality indicators have strong, mutually
intrinsic relationships.

4. CONCLUSION

In this paper, we extensively evaluated four water quality indi-
cators across the entirety of California over the past 70 years,

considering both Climate Zone and Geographical Type. We
found that the ML model incorporating spatio-temporal vari-
ables and other intrinsically related water quality indicators,
Climate Zone, and Geographical Type, can reliably estimate
four water quality indicators in California, including pH, Dis-
solved Oxygen, Specific Conductance, and Water Tempera-
ture. We established spatial interpolations for four water qual-
ity indicators and visualized their distributions. We observed
that the gradient changes of pH, Dissolved Oxygen, and Water
Temperature are from north to south. We discovered that Spe-
cific Conductance is unusually high in the Bay Area, which
might indicate the influence of extensive pollution or seawa-
ter erosion. Our future work will dive deeper into other envi-
ronmental factors that could influence water quality, such as
topography, industrial emissions, agricultural activities, and
environmental protection policy.
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